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Abstract

Detecting subjectivity in natural language is
crucial for various NLP tasks, including fake
news detection, fact-checking and automatic
summarization of reviews. However, achiev-
ing robust subjectivity detection across differ-
ent languages remains a challenging task due
to the complexity of linguistic diversity and
cultural differences. In this study, we present
our system developed for 2025 CheckThat!
Lab task 1 on subjectivity detection. We em-
ploy two distinct approaches: one using BERT-
like architectures with mDeBERTaV3-base 1

and ModernBERT-base 2, and the other using
LLMs such as Llama3.2-1B 3. The results in-
dicate that BERT-like models exhibit superior
performance in capturing nuanced information
and accurately determining subjectivity com-
pared to LLMs. Moreover, we find that incor-
porating sentiment information yields signifi-
cant improvements in the subjective F1 score
for English and Italian languages, whereas the
improvement is marginal for the others. This
means that subjectivity is identified better when
the sentiment information is injected into the
model. Furthermore, to overcome the imbal-
anced label distributions, we employed a deci-
sion threshold calibration procedure. This pro-
cedure has a substantial impact on performance
for languages with imbalanced label distribu-
tions, while providing only marginal gains for
more balanced languages.

1 Introduction

The rapid proliferation of online content has gen-
erated an immense volume of unstructured data,
complicating the differentiation between subjective
opinions and objective facts. This distinction is es-
sential for a variety of applications, including mis-
information detection and automated fact-checking.

1microsoft/mdeberta-v3-base
2answerdotai/ModernBERT-base
3meta-llama/Llama-3.2-1B

As news production and public discourse become
increasingly polarized, the accurate classification
of subjective and objective statements has become
progressively important: it is essential to be able to
distinguish objectivity when reading news paper.
Subjectivity detection constitutes a well-
established problem within the domain of
NLP, commonly considered a subtask of sentiment
analysis. Traditional methodologies have encom-
passed rule-based frameworks, lexicon-based
techniques, and classical machine learning models
employing hand-crafted features (Kamal, 2013).
Although these methods demonstrate satisfactory
performance in controlled environments, they
often encounter challenges related to linguistic
variability, contextual dependencies, and cross-
linguistic generalization. Recent advances in deep
learning, particularly transformer-based language
models, have markedly improved classification
performance (Savinova and Moscoso Del Prado,
2023). Nonetheless, many pre-trained models are
tailored for monolingual tasks, which constrains
their efficacy in multilingual settings.
This study aims to address these limitations by
developing a subjectivity detection system for the
CLEF 2025 CheckThat! Lab Task 1. The task
requires the classification of sentences extracted
from news articles in multiple languages, namely
Arabic, German, English, Italian, and Bulgarian, as
either subjective (SUBJ) or objective (OBJ). The
classification is carried out at the sentence level
without access to the surrounding context, thereby
increasing the complexity of the task. To address
this challenge, we employ two distinct approaches:
one based on BERT-like architectures and the other
on LLMs.
BERT-like architectures are advantageous in their
ability to generate contextualized representations
that enhance the understanding of whether a sen-
tence conveys objective content. Notably, pre-
vious editions of the CLEF CheckThat! Lab

https://huggingface.co/microsoft/mdeberta-v3-base
https://huggingface.co/answerdotai/ModernBERT-base
https://huggingface.co/meta-llama/Llama-3.2-1B


have have been tackled using such models to de-
tect subjectivity within news articles (Leistra and
Caselli, 2023). In our approach, we evaluate the
mDeBERTaV3-base (He et al., 2021b,a), a multi-
lingual transformer-based renowned for its robust
cross-linguistic generalization capabilities, along-
side the ModernBERT-base (Warner et al., 2024),
a recently developed English-only model designed
to achieve efficiency and performance improve-
ments with fewer parameters. To further enhance
subjectivity detection, we experimented with data
augmentation techniques by integrating sentiment
values associated with each sentence.
The second approach explores LLM fine-tuning us-
ing Llama-3.2-1B with an added classification head
to specialize the model for subjectivity detection
using English-only data.
Our experimental framework involves fine-tuning
these models on language-specific datasets pro-
vided by the challenge organizers 4 as well as
a combined dataset from all languages to examine
cross-lingual capabilities. Performance is evalu-
ated using metrics such as macro-average F1 score
and positive class (SUBJ) F1 score following a
decision threshold calibration procedure.
The empirical results indicate that BERT-like mod-
els demonstrate a superior ability to capture nu-
anced information and accurately determine sub-
jectivity compared to LLMs. Furthermore, aug-
menting sentences with sentiment information re-
sulted in substantial performance improvements.
Additionally, the decision threshold calibration pro-
cedure significantly enhanced performance for the
most unbalanced languages, such as Italian and
Arabic, while its impact was notably smaller for
nearly balanced languages, including Bulgarian,
English, and German. This finding is consistent
with the results presented in (Abdelhamid and De-
sai, 2024), which highlight the effectiveness of
threshold calibration in addressing class imbalance.

2 Background

The CLEF 2025 CheckThat! Lab Task 1 comprises
three distinct subtasks, each corresponding to a dif-
ferent experimental setting. Monolingual, where
both training and testing are conducted in a single
language; multilingual, where training and testing
involve multiple languages; and zero-shot, where
the model is trained on several languages but eval-
uated on previously unseen languages.

4CLEF 2025 CheckThat! Lab Task 1 Data

The multilingual and zero-shot subtasks impose
additional constraints, as they require the use of
multilingual models to correctly process tokenized
inputs. During our work with the multilingual set-
ting, we observed notable variations in model per-
formance across different languages. Certain fine-
tuning parameters and procedures performed well
on some languages but significantly worse on oth-
ers. We hypothesize that these discrepancies stem
from intrinsic linguistic differences; however, due
to our limited expertise in many of the languages
included in the task, we were unable to investigate
this hypothesis in depth.
About the architectural differences between
mDeBERTa-V3 and ModernBERT, mDeBERTa-
V3 employs a disentangled attention mechanism
that separately processes content and positional
information, enabling nuanced contextual analy-
sis through gradient-disentangled embedding shar-
ing. In contrast, ModernBERT adopts rotary posi-
tional embeddings (RoPE) and a hybrid attention
system alternating between global context model-
ing (8,192-token capacity) and localized 128-token
windows for computational efficiency. mDeBERTa-
V3 utilizes a 12-layer transformer with 86M back-
bone parameters, optimized for classification tasks
through enhanced mask decoding. ModernBERT
implements a deeper 22-layer base architecture
(149M parameters) with pre-normalization layers
and GeGLU activations, specifically engineered for
long-sequence processing and code comprehension
through strategic sequence packing and unpadding
techniques.
Given the aforementioned reasons, we selected
mDeBERTa due to its result in NLU tasks 5 and
ModernBERT due to comparable performances
with mDeBERTa while being more computation-
ally efficient. 6

3 System description

The implemented system consists of a straightfor-
ward pipeline designed to process data, train mod-
els, and generate predictions. The architecture and
coding aspects of the system are described in the
following.
The base architecture follows a standard fine-tuning
and evaluation pipeline leveraging pre-trained lan-
guage models. The architectural design for the
classification heads follows a simple feed-forward

5mDeBERTa-v3-base fine-tuning on NLU tasks
6ModernBERT-base model comparison
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neural network having as input the CLS token em-
bedding. As for the Llama3.2-1B based architec-
ture, the classification head has its input dimension
coherent with the LLM output. The sentiment archi-
tecture, only employed on the mDeBERTa model,
takes into account sentiment by having a larger in-
put size in its classification head, to accommodate
the new features that are concatenated to the last
hidden state of the model.

Data Preparation

For the sentiment pipeline, as visible in Fig-
ure 1, we augmented each dataset with the
output provided by the twitter-xlm-roberta-base-
sentiment (Barbieri et al., 2022) model, which is a
multilingual XLM-roBERTa-base model finetuned
for sentiment analysis. The output produced by
the model is a three dimensional vector represent-
ing the positive, neutral, and negative score of the
sentiment of a sentence.

Tokenization

For each dataset, we used the tokenizer specific to
the model being fine-tuned. During tokenization,
sentences were padded and truncated to a maxi-
mum length of 256 tokens. This approach success-
fully encompassed over 75% of sentence lengths
across all languages in the dataset.

Training and Inference

The models themselves are fine-tuned on the
train dataset, hyperparameter tuning is instead per-
formed on the dev dataset and dev-test dataset is
used to test the model on unseen data.

Post-Processing

To address class imbalance and enhance the bal-
ance between precision and recall, we transformed
the raw logits into probability scores using the Soft-
max function. This transformation provides two
complementary probabilities for class membership:
OBJ (0) and SUBJ (1). To derive the final predic-
tions, we implemented a threshold optimization
process. This involved conducting a grid search
over a specified interval to identify the optimal
decision threshold for the positive class (SUBJ).
The grid search was performed over the interval
(0.1, 0.9) with 100 iterations, aiming to maximize
the macro F1 score on the validation set. Once the
optimal threshold was determined, it was applied
to the test set to generate the final predictions.

The data preparation, tokenization, threshold opti-
mization, and prediction generation modules were
entirely written by us using the Huggingface li-
braries. Model training and evaluation pipelines
were built upon existing Huggingface training utili-
ties but were heavily modified to incorporate cus-
tomized evaluation metrics and threshold tuning.
The base architectures for mDeBERTaV3-base,
ModernBERT-base, and Llama3.2-1B were ob-
tained from the Huggingface model hub without
modification, aside from the addition of a classifi-
cation head for Llama3.2-1B, while the sentiment
architecture is based upon the mDeBERTaV3-base
with its last classification head modified to accomo-
date the additional sentiment features.

Figure 1: Model architecture with the three developed
pipelines.

4 Data

The dataset provided for the challenge is divided



into training, validation, and test sets. The ground
truth for the sentence is annotated by the dataset cre-
ator according to the subjectivity detection guide-
lines outlined in (Antici et al., 2024) which are the
following: sentences are classified as subjective if
they express personal opinions, sarcasm, exhorta-
tions, discriminatory language, or rhetorical figures
conveying an opinion. Objective sentences include
third-party opinions, open-ended comments, and
factual conclusions. Additionally, reported speech
is treated as objective, and statements reflecting per-
sonal emotions without forming an opinion are also
classified as objective to maintain real-world appli-
cability. Table 1 presents the distribution of labels
across the training, validation, and test sets. As a
first observation, we can see that the label distribu-
tion is unbalanced, with the objective tag being the
most prominent across all languages. A closer in-
spection reveals that Italian is the most unbalanced
language, exhibiting an objective-to-subjective ra-
tio of approximately 4:1, followed by Arabic. To
address this issue, we applied various techniques
during the design of our solution. Among them,
thresholding optimization yielded the most promis-
ing results.

Language Training Dev Dev-Test
OBJ SUBJ OBJ SUBJ OBJ SUBJ

Arabic 1,391 1,055 266 201 425 323
Bulgarian 406 323 175 139 143 107
English 532 298 240 222 362 122
German 492 308 317 174 226 111
Italian 1,231 382 490 177 377 136

Table 1: Distribution of objective (OBJ) and subjective
(SUBJ) labels across different languages and dataset
splits. The table presents statistics for the training, de-
velopment (Dev), and development-test (Dev-Test) sets.

5 Experimental setup and results

5.1 Task 1 - Monolingual

For the monolingual task, we fine-tuned
three pretrained models: mDeBERTaV3-base,
ModernBERT-base, and Llama3.2-1B. Due to
hardware limitations, we quantized Llama3.2-1B
to 8-bit using Low-Rank Adaptation (LoRA). Each
model was fine-tuned and evaluated exclusively
on a specific language to maintain consistency.
Our initial results indicated that simple fine-tuning
yielded satisfactory outcomes for all languages
except Arabic.

To address this issue, we applied a pre-translation
technique to the Arabic dataset by translating it
into English—a common approach in NLP tasks.
The translation was performed using the Helsinki-
NLP/opus-mt-ar-en (Tiedemann et al., 2023; Tiede-
mann and Thottingal, 2020) model developed by
the Language Technology Research Group 7 at the
University of Helsinki.
The finetuning process was performed for 6 epochs
with a batch size of 16 and a learning rate of
1×10−5. AdamW optimizer with a linear scheduler
and warmup was used while having Cross Entropy
Loss with class weights to address class imbalance.
For each language, the model with the lowest vali-
dation loss during finetuning was selected.
We assessed model performance using two evalu-
ation metrics. The Macro Average F1 Score mea-
sures overall performance across both classes (OBJ
and SUBJ), treating each class equally regardless
of its frequency. Additionally, the Positive Class
(SUBJ) F1 Score specifically evaluates the effec-
tiveness of subjectivity detection by focusing on the
positive class (SUBJ). This metric is particularly in-
sightful, as our models have struggled to correctly
identify subjective sentences. By analyzing this
score, we can determine improvements specifically
related to the subjective class.

Language Macro F1 SUBJ F1
mDeBERTa-V3
Arabic 0.5805 0.5598
Bulgarian 0.7555 0.7222
English 0.6375 0.4046
German 0.8218 0.7652
Italian 0.7654 0.6291
mDeBERTa-V3 + Sentiment
Arabic 0.5735 0.5741
Bulgarian 0.7718 0.7407
English 0.7036 0.5279
German 0.8291 0.7759
Italian 0.7769 0.6804
ModernBERT
English 0.6922 0.5612
Llama3.2-1B
English 0.6375 0.4046

Table 2: Model performance for Task 1 across languages.
The table reports Macro F1 and Positive Class (SUBJ)
F1 scores using a decision threshold calibration proce-
dure.

7helsinki language-technology
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Language Threshold No Threshold
Macro F1 SUBJ F1 Macro F1 SUBJ F1

Arabic 0.5805 0.5598 0.5538 0.4184
Bulgarian 0.7555 0.7222 0.7491 0.6970
English 0.6375 0.4046 0.7069 0.5556
German 0.8218 0.7652 0.8217 0.7699
Italian 0.7654 0.6291 0.7048 0.6237

Table 3: Comparison of model performance with and
without thresholding across different languages. The
table reports Macro F1 and Subjective (SUBJ) F1 scores
for both approaches.

5.2 Task 2 - Multilingual

For the multilingual task, we fine-tuned the
mDeBERTaV3-base model on a combined dataset
encompassing all language-specific datasets. This
approach was chosen because ModernBERT is
monolingual, and training Llama3.2-1B on the en-
tire dataset was computationally prohibitive due
to resource constraints. We then evaluated the
model’s performance across all languages to as-
sess its generalization capabilities.
The training and evaluation procedures followed
the same methodology as in Task 1.

Language Macro F1 SUBJ F1
mDeBERTa-V3
Multilingual 0.6942 0.6114
Excluding Arabic 0.7817 0.6887
mDeBERTa-V3 + Sentiment
Multilingual 0.6798 0.5332
Excluding Arabic 0.7962 0.7114

Table 4: Evaluation results of mDeBERTa-V3 on multi-
lingual data.

Given the known challenges associated with the
Arabic language, we conducted experiments by ex-
cluding Arabic from the dataset. As anticipated,
this approach resulted in a notable improvement,
with the macro F1-score increasing by approxi-
mately 0.1 and the subjective F1-score by ∼ 0.2.

5.3 Task 3 - Zero-shot

For the zero-shot task, we constructed ad hoc
language-specific training datasets containing three
languages and test language-specific datasets con-
taining the remaining two, evaluating all possible
combinations.
Since presenting all results would take up too much
space (a total of 18 rows), we decided to report only
some experimental results in Table 5.

Language Model Macro F1 SUBJ F1
Ar, Bg, Ge Base 0.7395 0.6066
Ar, Bg, Ge Base + Sentiment 0.7461 0.6134
En, It Base 0.6147 0.5166
En, It Base + Sentiment 0.6121 0.5087

Table 5: Zero Shot performances across different
language-specific dataset. If not specified in the lan-
guage column, the language-specific dataset is used to
test the model.

5.4 Analysis of the Sentiment Pipeline Benefits

The above results indicate that incorporating the
sentiment into models tends to improve the SUBJ
F1 score across nearly all tested languages. In
particular, for English, the addition of sentiment in-
formation yields considerable improvement. With
the baseline mDeBERTa-V3, the English SUBJ
F1 score is 0.4046. After adding the sentiment
pipeline (mDeBERTa-V3 + Sentiment), the SUBJ
F1 score increases to 0.5279—a gain of over 30%
relative to the baseline. Additionally, the overall
Macro F1 also increases from 0.6375 to 0.7036,
demonstrating that sentiment-based features con-
tribute positively not only to the positive class but
also to the general performance.

To further understand these improvements, we
conducted an in-depth analysis on the English test
set. In Tables 6 and 7, we examine the sentiment
scores associated with correctly and incorrectly
classified sentences, respectively. This analysis
provides insights into how sentiment processing
helps adjust model decisions in favor of more accu-
rate subjectivity predictions. As discussed further
in Section 6, these sentiment values offer cues that
refine the decision threshold, especially in ambigu-
ous cases, leading to the improvements seen in the
SUBJ F1 scores.

Label Mean Std
Positive Neutral Negative Positive Neutral NegativeOBJ

0.32 0.31 0.36 0.20 0.31 0.32
SUBJ 0.23 0.24 0.51 0.19 0.35 0.35

Table 6: Mean and standard deviation of sentiment val-
ues when the sentiment model correctly identifies sen-
tences, but the other model fails.

6 Discussion

6.1 Quantitative Results

The results from our experiments reveal several key
insights into the performance of different models



Label Mean Std
Positive Neutral Negative Positive Neutral NegativeOBJ

0.23 0.37 0.39 0.14 0.32 0.40
SUBJ 0.29 0.37 0.32 0.23 0.36 0.34

Table 7: Mean and standard deviation of sentiment val-
ues when the sentiment model does not correctly identi-
fies sentences, but the other model does.

and configurations for subjectivity detection across
multiple languages.
The Llama3.2-1B model did not perform as well
as the BERT-like models. This suggests that while
LLMs have potential, they may require more spe-
cialized fine-tuning or architectural adjustments to
match the performance of BERT-like models in
subjectivity detection tasks. Additionally, larger
models without weight quantization might achieve
better performance; however, such models were
not feasible given our resource constraints.
Although our primary goal was to improve pre-
dictions for the Arabic language, the translation
process may have introduced noise and inaccu-
racies. Indeed, the pre-translation technique re-
sulted in poorer performance compared to the non-
translated approach. This additional noise can prop-
agate through the model, thereby diminishing its
classification power.
The integration of sentiment information has no-
tably enhanced the Positive Class (SUBJ) F1 score
for languages such as Italian and English. This
improvement indicates that sentiment features can
be especially advantageous for languages where
identifying subjectivity presents more challenges,
potentially due to linguistic subtleties or the typical
expression of subjective content in these languages.
The observed gains in performance suggest that sen-
timent analysis helps refine the model’s ability to
discern subjective nuances, thereby improving clas-
sification accuracy. However, the precise mecha-
nisms driving this enhancement are not fully under-
stood and merit further exploration to uncover the
underlying factors contributing to these improve-
ments.
Secondly, the decision threshold calibration had a
significant impact on performance for languages
with highly imbalanced datasets, such as Arabic
and Italian. For these languages, the decision
threshold adjustment led to substantial improve-
ments in both Macro F1 and SUBJ F1 scores. In
contrast, for more balanced languages like Bulgar-
ian, English, and German, the impact of threshold
calibration was less pronounced. This indicates that

threshold calibration is a crucial step for handling
class imbalance effectively.

The Arabic monolingual model exhibits the weak-
est performance among the models analyzed,
which may be attributed to multiple factors, in-
cluding limitations in the pretraining data, domain
mismatches, or structural differences in how infor-
mation is encoded in Arabic compared to other lan-
guages. These challenges suggest that the model’s
training data may lack sufficient diversity or cov-
erage, or that inherent linguistic characteristics of
Arabic present difficulties for the model’s learn-
ing process. To further illustrate these weaknesses,
we observe that when Arabic is included in the
zero-shot task test dataset, the performance drops
significantly compared to when the language is
present in the training dataset. This suggests that
even a multilingual training approach is not suffi-
cient to address these challenges. When removing
Arabic from the dataset in both the multilingual
and zero-shot subtasks, we observed a significant
improvement in performance, further proving the
language specificity. While further investigation is
required to pinpoint the exact cause of this perfor-
mance gap, such an analysis falls outside the scope
of this study.

In the multilingual task, the inclusion of sentiment
information led to improved performance com-
pared to using the mDeBERTa-V3 model alone.
This suggests that sentiment information can en-
hance the model’s ability to generalize across lan-
guages, likely by providing additional context that
aids in distinguishing subjective content.

To better understand the impact of sentiment in-
formation on the performance of our models, we
conducted a cross-error analysis on the sentences
misclassified by both the sentiment model and the
baseline model, as reported in Section 5. Addi-
tionally, we examined the distribution of sentiment
across the dataset. In our initial analysis, we identi-
fied the sentences correctly classified by the senti-
ment model but misclassified by the baseline model
(Table 6). The results indicate that the average neg-
ative sentiment for subjective sentences is signifi-
cantly higher compared to the baseline (0.33). This
suggests that the sentiment model is more effective
in recognizing subjectivity when the sentiment is
negative. To validate this intuition, we performed
the same analysis on the sentences misclassified by
the sentiment model but correctly classified by the
baseline model (Table 7). In this case, no signifi-



cant pattern emerged, as all metrics remained close
to their baseline values. Finally, we analyzed the
overall sentiment distribution in the dataset (Fig-
ure 2). The results confirm our initial observations:
subjective sentences tend to exhibit a more nega-
tive sentiment on average, reinforcing the identified
pattern by our model.

Figure 2: Sentiment distribution over the dataset. The
black line represents the median of the distribution, the
box represents the interquartile range while the whiskers
represents the variability of the data (minimum and
maximum value)

6.2 Error Analysis

Since we discovered interesting results by incor-
porating sentiment into the classification process,
our error analysis focuses on comparing misclas-
sifications between the base model and the senti-
ment model. By understanding the improvements
and identifying sentences that remain misclassified,
further studies can build upon our findings as a
starting point. Starting with English, we plotted the
violin plot by sentiment and label (Figure 3). Ob-
serving this distribution, we confirm our previous
findings: most subjective sentences exhibit a very
high negative sentiment score. Specifically, the me-
dian is above 0.6, while the third quartile exceeds
0.8. This trend is also observed in the Italian lan-
guage. Conversely, Arabic and Bulgarian exhibit
the opposite pattern, as shown in Figure 4. Given
that Arabic is the most prominent language in the
combined datasets (Table 1), these adverse trends
likely hindered the model’s ability to extract senti-
ment information from the dataset. Indeed, when
Arabic is removed from the multilingual datasets,
performance improves.
To better illustrate the advantages of incorporat-
ing sentiment into the classification process, we
present two examples of subjective sentences that
were correctly classified by the sentiment model

but misclassified by the base model. For each sen-
tence, we report the corresponding sentiment score
in the format (positive, neutral, negative).
But then Trump came to power and sidelined the
defense hawks, ushering in a dramatic shift in Re-
publican sentiment toward America’s allies and
adversaries. (0.109, 0.035, 0.856)
Boxing Day ambush & flagship attack Putin has
long tried to downplay the true losses his army has
faced in the Black Sea. (0.056, 0.014, 0.930)

Figure 3: Sentiment distribution over the english lan-
guage. The three lines in the violin plot represents the
first, second and third quartile.)

Figure 4: Sentiment distribution over the Arabic lan-
guage. The three lines in the violin plot represents the
first, second and third quartile.)

7 Conclusion

In this study, we explored the effectiveness of
different fine-tuned transformer-based models for
subjectivity detection across multiple languages.
Our findings demonstrate that BERT-like archi-
tectures outperform LLMs in capturing the nu-
anced information necessary for distinguishing be-
tween subjective and objective content. Specifi-
cally, mDeBERTaV3-base with sentiment augmen-
tation achieved the highest performance across



most languages, with notable improvements in En-
glish and Italian. The decision threshold calibra-
tion procedure proved particularly effective for lan-
guages with imbalanced class distributions, sig-
nificantly enhancing both macro-average F1 and
subjective class F1 scores. Interestingly, we ob-
served consistent challenges with Arabic language
detection across all experimental settings, suggest-
ing potential limitations in how current multilin-
gual models encode information for this language.
Our error analysis revealed that complex linguistic
structures and context-dependent expressions rep-
resent persistent challenges for all models tested.
Future work could explore more sophisticated ap-
proaches for feature fusing (rather than simple con-
catenation), additional linguistic features beyond
sentiment, and investigate specialized approaches
for languages with unique structural characteristics.
Overall, our study demonstrates the effectiveness
of BERT-like models for subjectivity detection and
highlights the importance of considering linguistic
variability, contextual dependencies, and class im-
balance in multilingual settings. Further research
is needed to explore the potential of LLMs and
to address the challenges identified in our error
analysis.

8 Links to external resources

• Github repository

• Dataset
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