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Abstract
Deep Neural Networks have shown exceptional promise in medical image analysis, yet their vulnerability to
adversarial attacks poses a critical threat to patient safety and clinical trust. This paper presents a systematic
investigation into the robustness of medical image classifiers, a cornerstone of Trustworthy AI as defined by
the European Commission’s guidelines. We operate under a realistic gray-box threat model, fine-tuning a
ResNet-18 model on the PatchCamelyon dataset for metastatic tissue detection and evaluating its resilience
against evasion attacks: the Fast Gradient Sign Method and Projected Gradient Descent. To counter these
threats, we implement and benchmark a suite of input preprocessing defenses: Gaussian smoothing, JPEG
compression, spatial smoothing, and total variance minimization. Our analysis rigorously assesses each de-
fense’s effectiveness, the impact of standard data augmentation, and the inherent trade-off between adversarial
robustness and diagnostic accuracy. By providing a comparative analysis of attack efficacy and defense perfor-
mance, this work offers crucial insights into the technical and ethical challenges of developing secure, reliable,
and ethically sound AI systems for clinical deployment. The code for reproducing the results is available at
https://github.com/MatteoFasulo/HERMES.
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1. Introduction

Deep Neural Networks (DNNs) have emerged as a transformative technology in medical image analysis,
demonstrating capabilities that often rival or surpass human experts [1]. This breakthrough embodies
the principle of beneficence, holding immense potential to enhance healthcare delivery. However,
DNNs exhibit a critical vulnerability to adversarial attacks: subtle, often imperceptible perturbations to
input data designed to elicit misclassifications. In the high-stakes domain of medical diagnostics, this
vulnerability directly threatens the principle of non-maleficence, as an incorrect prediction can lead to
severe patient harm. This fragility undermines the reliability of AI systems and erodes trust, posing a
significant barrier to their widespread adoption.
According to the European Commission’s Ethics Guidelines for Trustworthy AI, a trustworthy system
must be lawful, ethical, and robust—both technically and socially [2]. Our work investigates this crucial
pillar of robustness through the lens of evasion attacks. We operate under the gray-box threat model,
a realistic scenario where an adversary possesses knowledge of the target model’s architecture and
parameters but remains unaware of any defense mechanisms [3]. This model represents a credible threat,
as model details may be public or become accessible through leaks or open-source implementations.
In this paper, we conduct a systematic investigation into the robustness of a ResNet-18 classifier fine-
tuned on the PatchCamelyon dataset [4] for metastatic tissue detection. Building on prior work that has
demonstrated the potential of input transformations as a defense [5], we evaluate its vulnerability to two
canonical attacks, the Fast Gradient Sign Method (FGSM) [6] and Projected Gradient Descent (PGD) [7].
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We then benchmark a suite of input preprocessing defenses: Gaussian smoothing, JPEG compression,
spatial smoothing, and total variance minimization. Our evaluation focuses on the critical trade-off
between preserving accuracy on benign data and ensuring resilience against adversarial samples. This
work aims to provide foundational insights into the technical challenges and ethical imperatives for
developing secure, trustworthy, and clinically viable AI systems.

2. Dataset

The PatchCamelyon dataset [4] is a collection of 327,680 histopathologic scans of lymph node sections
(96×96 pixels). It is designed for binary classification: identifying whether a patch contains metastatic
tissue. Its clinical relevance, balanced classes, and manageable scale make it an excellent benchmark for
this study. Representative samples are shown in Figure 1.

(a) Negative samples (healthy tissue).

(b) Positive samples (metastatic tissue).

Figure 1: Representative samples from the PatchCamelyon dataset [4].

3. Model and Training

We employ a ResNet-18 architecture [8], which offers a strong balance between model capacity and
computational efficiency. To isolate the effect of standard training practices on adversarial robustness,
we train two separate models: one with no data augmentation, and one with a suite of common
augmentations (random horizontal flips, rotations, and color jitter). By comparing these two variants,
we can directly assess the extent to which standard augmentation improves resilience to adversarial
perturbations, as similarly investigated by Guo et al. [5].
For fine-tuning, we adopt the linear-probing-then-fine-tuning (LP-FT) protocol recommended by Kumar
et al. [9], which mitigates catastrophic forgetting of pretrained features. Specifically, we first train only
the new classification head (linear probing) while freezing the ResNet backbone, and then unfreeze the
entire network for end-to-end fine-tuning. Kumar report that LP-FT achieves roughly a 1% improvement
on in-distribution accuracy and a 10% improvement on out-of-distribution generalization compared
to standard fine-tuning. We adopt this two-stage LP-FT strategy because the ResNet-18 weights are
pretrained on a domain substantially different from our target dataset.



4. Adversarial Threat Model

To rigorously assess our defenses, we employ two canonical gradient-based attacks under a gray-box
scenario. The choice of these two attacks is deliberate: FGSM serves as a rapid but naive baseline, while
PGD represents a much stronger, iterative adversary that provides a more realistic estimate of a model’s
vulnerability [3]. A diagram of the attack scenario is depicted in Figure 2.

Clean example

Adversarial example
ResNet18 OutputHidden

Defense

Figure 2: A diagram of the gray-box attack pipeline. The attacker crafts an adversarial example using knowledge
of the model but is unaware of the defense layer that preprocesses the input before classification.

4.1. Fast Gradient Sign Method (FGSM)

FGSM is a single-step attack that computes the adversarial example 𝑥adv by adding a perturbation along
the direction of the sign of the loss gradient [6]:

𝑥adv = 𝑥+ 𝜀 · sign(∇𝑥𝐽(𝜃, 𝑥, 𝑦))

where 𝜀 controls the perturbation magnitude. While computationally efficient, FGSM was never intended
as a strong benchmark for robustness and can give a false sense of security [3]. We include it as a
baseline to illustrate how easily simple attacks can be thwarted, in contrast to more sophisticated
methods.

4.2. Projected Gradient Descent (PGD)

PGD is a stronger, iterative attack that is widely considered the gold standard for evaluating adversarial
robustness [7]. It takes multiple small steps, projecting the result back into an 𝜀-ball around the original
image after each step to ensure the perturbation remains constrained: Let ℬ𝜀(𝑥) be the 𝜀-ball around 𝑥.
The update rule for each iteration 𝑡 is given by:

𝑥𝑡+1 = Πℬ𝜀(𝑥) (𝑥𝑡 + 𝛼 · sign(∇𝑥𝐽(𝜃, 𝑥𝑡, 𝑦)))

where 𝛼 is the step size. This iterative process allows PGD to find more effective adversarial examples
by exploring the loss landscape more thoroughly, providing a much more challenging and realistic test
for any defense mechanism.



5. Comparative Evaluation of Defenses

We benchmarked four common input preprocessing defenses: Gaussian Smoothing, Spatial Smoothing
(Median Filtering), Total Variation Minimization (TVM), and JPEG Compression. This section synthesizes
the results to provide a comparative analysis of their effectiveness. We chose the Area Under the Receiver
Operating Characteristic (AUROC) curve [10] as our primary evaluation metric. AUROC is the de-facto
standard for evaluating binary classifiers in the medical field because it is threshold-independent. It
measures a model’s ability to distinguish between positive and negative classes across all possible
classification thresholds, providing a comprehensive assessment of diagnostic utility that is not tied
to a single, arbitrary cutoff point. Visual examples of each defense are included in Appendix A, and
detailed performance curves are in Appendix B.

5.1. Defense Efficiency Against Adversarial Attacks

Our analysis reveals a stark difference in defense performance against FGSM and PGD. Against the
single-step FGSM attack, many defenses exhibited a "V-shaped" performance curve, appearing sur-
prisingly effective against stronger perturbations. This occurs because large-𝜖 FGSM creates coarse,
high-frequency noise that low-pass filters easily remove, a phenomenon that can create a false sense of
security.
This resilience vanished against the stronger, iterative PGD attack. For nearly all defenses, performance
degraded monotonically and catastrophically as PGD’s perturbation budget increased. This underscores
PGD’s ability to bypass simple, non-adaptive input transformations and highlights the danger of
evaluating defenses only against weak attacks.
As shown in Table 1, Total Variation Minimization (TVM) offered the most significant robustness,
particularly when combined with data augmentation. It maintained a non-trivial AUROC of 0.505 against
the strongest PGD attack. In contrast, other defenses like Gaussian Smoothing and JPEG Compression
proved almost entirely ineffective against strong PGD, with their AUROC scores collapsing to near-zero,
rendering them unreliable in a robust security model.

Table 1
Summary of defense performance (AUROC) on the augmented model. We report performance on benign (clean)
images, against a weak PGD attack (𝜖 = 0.01), and a strong PGD attack (𝜖 = 0.1).

Defense Method Clean Data PGD (𝜖 = 0.01) PGD (𝜖 = 0.1)

None (Baseline) 0.940 0.129 0.000
Gaussian Smoothing (k=3, 𝜎=0.8) 0.881 0.622 0.001
JPEG Compression (q=50) 0.925 0.732 0.002
Spatial Smoothing (w=5) 0.758 0.656 0.221
Total Variance Min. (p=0.3) 0.793 0.734 0.505

5.2. The Robustness-Accuracy Trade-off

A critical aspect of any practical defense is its impact on model performance with benign inputs. Our
results (Table 2) show a clear and often severe trade-off between adversarial robustness and clean-data
accuracy. This represents a direct tension between the ethical principles of beneficence (achieving high
diagnostic accuracy) and non-maleficence (preventing harm from misdiagnosis).
Defenses that were most effective against attacks, such as TVM and Spatial Smoothing, incurred the
highest accuracy cost on clean images, reducing the AUROC from a baseline of 0.940 to 0.793 and 0.758,
respectively. This degradation is caused by the filters removing fine-grained, discriminative features
along with adversarial noise. Conversely, defenses with minimal impact on clean data, like high-quality
JPEG Compression, offered almost no protection. This fundamental trade-off presents a major challenge
for clinical deployment, where both high accuracy and robustness are non-negotiable.



Defense Method No Data Augmentation Data Augmentation
None (Baseline) 0.925 0.940
Gaussian Smoothing (k=3, 𝜎=0.8) 0.860 0.890
JPEG Compression (q=50) 0.892 0.925
Spatial Smoothing (w=5) 0.676 0.758
Total Variance Min. (p=0.3) 0.552 0.793

Table 2
Comparison of model performance (AUROC) on clean data. The table compares a baseline model (no defense
strategy applied) against models equipped with various preprocessing defenses, both with and without data
augmentation, to illustrate the inherent accuracy cost of each defensive strategy.

5.3. The Role of Data Augmentation

We analyzed the impact of standard data augmentation by comparing the performance of models trained
with and without it. The results, summarized in Figure 3, show a nuanced picture.
Against the simpler FGSM attack, data augmentation was almost universally beneficial. However,
against PGD, the effect was mixed. While augmentation significantly boosted the most effective defense
(TVM), it was detrimental when combined with weaker defenses like Gaussian Smoothing against
moderate PGD attacks. This suggests that augmentation may inadvertently create new vulnerabilities
that a strong iterative attack can exploit. Furthermore, it only marginally improved the model’s intrinsic
robustness, indicating that standard augmentation is not a sufficient defense on its own.

5.4. Computational Overhead of Defenses

For a defense to be practical in a clinical workflow, its computational overhead must be acceptable.
Gaussian Smoothing, Spatial Smoothing, and JPEG Compression are all highly efficient, adding
negligible latency. Total Variation Minimization (TVM), as an iterative optimization algorithm, is
by far the most computationally demanding. However, for the 96×96 images in our study, its execution
time remains within a practical budget for non-urgent, batch-processing workflows. Therefore, all
evaluated defenses are computationally feasible, shifting the primary selection criterion to the balance
between defensive strength and its impact on diagnostic accuracy.

6. Ethical and Trustworthy Implications

The technical vulnerabilities and defense trade-offs we observed have profound ethical implications for
deploying AI in healthcare. These challenges directly map to the core requirements for Trustworthy
AI as outlined by the European Commission [2] and the principles synthesized by initiatives like
AI4People [11].

Technical Robustness and Safety. The EU guidelines identify this as a key requirement. Our
findings demonstrate that deploying a medical AI with simple, non-adaptive defenses would be a clear
failure to meet this standard. The catastrophic performance drop against PGD shows these systems are
not "resilient and secure." Relying on such defenses creates a dangerous illusion of safety, violating the
core duty to prevent harm.

Human Agency and Oversight. A system vulnerable to manipulation undermines the clinician’s
agency. As AI4People argues, AI should enhance human capabilities [11]. If an AI’s output can be
maliciously flipped without any visible trace, it ceases to be a reliable tool. This forces clinicians into an
untenable position: either blindly trust a potentially compromised system or abandon a technology
that could otherwise provide significant benefits. Effective robustness is a prerequisite for meaningful
human-in-the-loop oversight.



(a) Impact on robustness against FGSM attacks.

(b) Impact on robustness against PGD attacks.

Figure 3: Data Augmentation Impact Heatmaps. Values represent AUROC (Augmented Model) - AUROC
(Non-Augmented Model). Green indicates improved robustness with augmentation; red indicates degradation.

Privacy and Data Governance. While our focus is on evasion attacks, the underlying lack of
robustness is a security flaw. A system that is not secure against input manipulations is unlikely to be
secure against other threats. Vulnerabilities that allow for evasion attacks could potentially be exploited
for privacy-violating attacks like model inversion or membership inference, which aim to reconstruct



training data or identify individuals within a dataset. Therefore, ensuring adversarial robustness is an
integral part of a comprehensive data protection and privacy strategy.
Ultimately, the accuracy-robustness trade-off is not merely a technical dilemma but an ethical balancing
act. Deciding how much diagnostic accuracy can be sacrificed for a given level of safety requires a
multi-stakeholder dialogue involving clinicians, developers, patients, and ethicists. It is a question that
cannot be answered by algorithms alone.

7. Conclusion

This paper presented a systematic investigation into the adversarial robustness of a medical image
classifier, benchmarking common preprocessing defenses under a gray-box threat model. Our findings
confirm the significant vulnerability of DNNs in this domain, particularly to strong iterative attacks
like PGD, which consistently degraded model performance to a level unsuitable for clinical use.
Among the evaluated defenses, Total Variation Minimization (TVM), when combined with data augmen-
tation, demonstrated the most effective resilience. This robustness, however, was achieved at the cost
of a substantial drop in performance on benign data, highlighting a critical trade-off between security
and nominal accuracy. This trade-off is not just a technical issue but an ethical one, forcing a difficult
balance between the principles of beneficence and non-maleficence.
Our work underscores that simple, non-adaptive preprocessing defenses are insufficient to guarantee
the reliability and safety required for Trustworthy AI in medicine. The pronounced vulnerabilities and
trade-offs observed pose a significant challenge, demanding the development of more integrated and
fundamentally robust solutions. Fulfilling the promise of AI in healthcare requires moving beyond
simple accuracy metrics to build systems that are demonstrably secure, reliable, and ethically aligned
with the core mission of patient care.

8. Future Work

Building upon the findings and limitations of this study, we identify several crucial directions for future
research:

• Evaluation against Adaptive Attacks: The most critical next step is to evaluate these defenses
against adaptive attacks, where an adversary is aware of the defense and crafts perturbations to
bypass it. Such attacks are known to defeat many simple input transformation defenses [12], and
this evaluation is essential for a realistic security assessment.

• Integration of Adversarial Training: Future work should compare and combine preprocessing
defenses with adversarial training [7]. Investigating whether these input transformations
can complement adversarial training to achieve higher robustness without sacrificing as much
clean-image accuracy is a promising research avenue.

• Exploration of Certified and Detection-Based Defenses: We recommend expanding the scope
to include certified defenses, which offer formal robustness guarantees, and detection-based
methods that aim to identify and reject adversarial inputs before classification.

• Generalization to Diverse Modalities and Architectures: To ensure broader applicability,
this analysis should be replicated across different medical imaging modalities (e.g., MRI, CT
scans) and network architectures (e.g., Vision Transformers).
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A. Defense Visualizations

This appendix provides visual examples of the effect of each preprocessing defense on a sample image
from the PatchCamelyon dataset.

(a) Gaussian Smoothing with varying 𝜎. (b) JPEG Compression with varying quality 𝑞.

(c) Spatial Smoothing with varying window size 𝑤. (d) Total Variation Minimization.

Figure 4: Visual effects of the evaluated preprocessing defenses.



B. Detailed Performance Curves

This appendix contains the detailed performance plots (AUROC vs. attack strength 𝜖) for each defense
method, comparing models trained with and without data augmentation.

Figure 5: Performance of Gaussian Smoothing against FGSM attacks.

Figure 6: Performance of Gaussian Smoothing against PGD attacks.



Figure 7: Performance of JPEG Compression against FGSM attacks.

Figure 8: Performance of JPEG Compression against PGD attacks.

Figure 9: Performance of Spatial Smoothing against FGSM attacks.



Figure 10: Performance of Spatial Smoothing against PGD attacks.

Figure 11: Performance of Total Variation Minimization against FGSM attacks.

Figure 12: Performance of Total Variation Minimization against PGD attacks.
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